Fine Particle Composition Measured During ICARTT _ An Overview Of Inorganic Ions And Water Soluble Organic Carbon

Rick Peltier
Amy Sullivan
Chris Hennigan
Rodney Weber
Charles A. Brock
Joost de Gouw
John Holloway

Additional Acknowledgements:
Ann Middlebrook, Brendan Matthews, Adam Wollny, Carsten Warneke, Donna Sueper, and the rest of the NOAA AL team.

Support: NOAA
Roadmap

A. Measurement overview
 Statistics, altitude profile, charge balance

B. Case Study 1: Aerosol source variability

C. Case Study 2: Urban aerosols that are subjected to power plant influence.

D. Summary
PILS Overview

IC: 90-second time integrated sample every 2.45 minutes.

Inorganic Ion Species: Sulfate, Nitrate, Chloride, Ammonium, Sodium, Calcium, Magnesium, Potassium

LOD: 20-500 ng m\(^{-3}\), depending on species.

Uncertainty: 20% (40% below 2x LOD)

TOC: 3-sec. time integrated sample averaged to 1 minute.

Water Soluble Organic Carbon (WSOC)

TOC = TC-TIC

LOD: 0.1-1.0 ug Carbon m\(^{-3}\) (depending on averaging time)

Uncertainty: 10%.
Observed Plume Types

- Relatively pure biomass
 - High WSOC and Acetonitrile concs.
 - Well-correlated WSOC & Acetonitrile
 - Little sulfate
- Mixed Biomass/Regional (Flt 040722)
 - High WSOC, acetonitrile, sulfate.
- Urban/Regional
 - High sulfate, lower WSOC (~<4 µgC m⁻³)
Observation Overview

- Sulfate, WSOC, Ammonium often observed. Occasional nitrate (usually biomass).
- Sulfate well correlated with volume in urban/regional and mixed plumes, while WSOC correlated with volume in all plumes (strongest in biomass).
- Significant variability in aerosol concentrations.

<table>
<thead>
<tr>
<th>LOD</th>
<th>Mean</th>
<th>Median</th>
<th>Std Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.12</td>
<td>3.77</td>
</tr>
<tr>
<td>Sulfate</td>
<td>0.03</td>
<td>3.98</td>
<td>2.07</td>
<td>4.69</td>
<td>30.96</td>
</tr>
<tr>
<td>Nitrate</td>
<td>0.04</td>
<td>0.06</td>
<td>0.02</td>
<td>0.24</td>
<td>4.66</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.2</td>
<td>0.1</td>
<td>0.6</td>
<td>0.1</td>
<td>2.7</td>
</tr>
<tr>
<td>Ammonium</td>
<td>0.2</td>
<td>1.1</td>
<td>0.1</td>
<td>1.1</td>
<td>6.5</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>WSOC</td>
<td>0.1</td>
<td>2.2</td>
<td>1.6</td>
<td>2.2</td>
<td>25.8</td>
</tr>
<tr>
<td>Fine Volume</td>
<td>n/a</td>
<td>12.21</td>
<td>10.1</td>
<td>13.56</td>
<td>690.3</td>
</tr>
</tbody>
</table>

\(^1\) In µg m\(^{-3}\) for ions, µg Carbon m\(^{-3}\) for WSOC, and µm\(^3\) cm\(^{-3}\) for fine volume
Altitude Profiles

- $\text{SO}_4^{\text{2-}}$, NH_4^+, WSOC higher at lower altitudes.
- Significant increases in NH_4^+, NO_3^-, WSOC during biomass – distinct layers.
- Little altitude dependence for nitrate.
Additional Analysis of Altitude Profile

- Species/fine volume median of 500m bins.
- Little change in fraction for sulfate and biomass-derived WSOC.
- Increase in WSOC/fine volume fraction with altitude.
Charge Balance Along Altitude

- Measured aerosol ionic components generally in charge balance (especially at high alt)

- Many events where net charge is negative – driven by sulfate, and most frequently at low alt. (i.e. excess sulfate not balanced by ammonium)

- Transient events of positive net charge during biomass events – suggest unmeasured organic acid as anion pair (to NH_4^+?).
Case Study 1: Flight 040809
Nighttime flight, Penn. v.s. East-coast
Case Study 2: Flight 040815
Plumes over Atlanta, GA.

SO\textsubscript{2} and SO\textsubscript{4}2- spikes from local power plants

WSOC-CO: \(R^2 = 0.77 \)
Case Study 2: Flight 040815
Plumes over Atlanta, GA.

Little WSOC enhancement in Power Plant Plumes
Summary (1/2)

- WSOC highest in biomass plumes, sulfate highest in urban/regional outflow.
 - Correlated: sulfate = regional, mixed; WSOC = all (but strongest in biomass)
- WSOC and sulfate highly variable (in both concentration and spatial distribution).
 Highest concentrations at lower altitude.
- Non-biomass WSOC fraction of fine volume increases with altitude; sulfate did not – why?
 - Difference in SO_4^{2-}/WSOC formation w/ alt.
 - Difference in SO_4^{2-}/WSOC scavenging w/ alt.
- $\text{NH}_4^+/$SO$_4^{2-}$ (molar) typ. 2; in power generation regions typ. 1.
Summary (2/2)

- **Case Study 1: example of aerosol source variability.**
 - Higher [sulfate/fine volume] in power generation regions, higher [WSOC/fine volume] in urban outflow
 - has implications on O_3 chemistry, Brown et al., Science, submitted.

- **Case Study 2: urban SO_4^{2-} and WSOC w/ local power plant plumes.**
 - Sulfate composed of background ($\text{NH}_4^+/\text{SO}_4^{2-} \sim 2$) that is enhanced ($\sim x2$) by distinct high-concentration sulfate plumes ($\text{NH}_4^+/\text{SO}_4^{2-} \sim 1$)
 - WSOC correlated with CO, little enhancement in fresh PP plumes.