Sources and Atmospheric Processing of Fine Particles from Asia and the Northwestern United States Measured During INTEX-B

Peltier, R., Hecobian, A., Weber, R.
Stohl, A
Atlas, E., Riemer, D.
Blake, D.
Apel, E., Campos, T., Karl, T.

1Georgia Tech, 2Norwegian Institute for Air Research, 3University of Miami, 4UC Irvine, 5NCAR

Funded by NASA

Paper available at: http://www.atmos-chem-phys-discuss.net/papers_in_open_discussion.html
Outline/Methods

• INTEX-B C-130 PM$_1$ Results
 – Asian vs North American air masses
 • SO_4^{2-} and WSOC average concentrations
 • WSOC/SO_4^{2-} vertical profiles
 – Source for Free Trop. Organic Aerosol
 • INTEX-B Eg; WSOC in region of cloud detrainment
 • WSOC vs Biogenic/Anthrop. VOCs, multiple regression results

• Methods: PILS; PM$_1$ particles captured in water
 – Soluble anions and cations by IC (SO_4^{2-})
 – Water-soluble Organic Carbon (WSOC) by TOC analysis
INTEX-B: NSF C-130 Flights

April 21 to May 15, 2006
Altitude Range: ~ 0.1 to 7.3 km asl.
10 Flights out of Everett WA
Asia vs N. American Influence Using Flexpart CO

E.g., Predominant North American Influence

E.g., Predominant Asian Influence

Flexpart CO: Emissions Only

- Asian CO: >75% Asian
 48%, n = 2931
- N. American CO: >75% NA.
 12%, n = 704
- Remainder: 40% not clear which dominated
 Asian and N.A. Flexpart CO>100ppbv ~ 95%
INTEX-B vs ICARTT

<table>
<thead>
<tr>
<th>Median Concentrations</th>
<th>All</th>
<th>Asia</th>
<th>NA</th>
<th>Median Concentrations</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSOC (\mu gC/m^3)</td>
<td>0.3</td>
<td>0.2</td>
<td>0.9</td>
<td>WSOC (\mu gC/m^3)</td>
<td>1.6</td>
</tr>
<tr>
<td>SO4(=) (\mu g/m^3)</td>
<td>0.6</td>
<td>0.4</td>
<td>0.8</td>
<td>SO4(=) (\mu g/m^3)</td>
<td>4.0</td>
</tr>
</tbody>
</table>
In many regions, free trop. particulate OA is greater than SO$_4^{2-}$ mass.

Comparison of Fine OA/\(SO_4^=\) Alt. Profiles

In many regions, free trop. particulate OA is greater than \(SO_4^=\) mass.

In Asian air masses, recorded from C-130 during INTEX-B, free trop. depleted in OA wrt \(SO_4^=\).
Why is INTEX-B Asian Altitude Profile Different

OA & SO₄²⁻ Lost in Precip. near Asia

- SO₄²⁻ reformed in route, some SO₂ penetrates precip.
- OA not reformed
 - SOA precursors scavenged and/or depleted prior to precip., and no sig. source over ocean.

Precipitation Scavenging

Secondary Production

Observation by C130 research aircraft characterized by high sulfate relative to WSOC.

NORTH AMERICA

ASIA

PACIFIC OCEAN

~1 day

~6-8 days
What is Source for FT Organic Aerosol?

INTEX-B:
Northwestern U.S. free trop.
OA enhanced wrt SO_4^{2-}.

Region of high organic aerosol concentrations measured in FT over Northern Nevada (alt ~ 4 km)

![Graph showing INTEX-B and ICARTT/NEAQS regions with median WSOC values](image)

* From Heald et al. 2005
What is Source for N.A. FT Organic Aerosol?

- Possible California Central Valley & coastal urban areas
- WSOC somewhat correlated with CO
- ΔWSOC/ΔCO higher than other studies

Average urban Eastern U.S. clear sky SOA production $\sim 34 \, \mu\text{gC/m}^3/\text{ppmv}$ (de Gouw et al. 2007)
Enhanced Free Trop. WSOC Is In Region of Cloud Outflow

- Aircraft video shows cloudy region
- Back trajectories thru clouds
- WSOC - H$_2$O$_v$ correlated

Graph:
- Slope: 0.33 ± 0.03
- Int: 0.19 ± 0.10
- $r^2 = 0.80$

MODIS (Aqua) AOD/COT observed between 21:25Z and 21:35Z

Satellite images provided by Chieko Kittaka

- **Aircraft video** shows cloudy region
- **Back trajectories** thru clouds
- **WSOC - H$_2$O$_v$** correlated
WSOC Biogenic/Anthropogenic by Multivariate Analysis

\[WSOC_{pred} = B_0 + B_1 x_1 + B_2 x_2 + \sum B_i x_i \]

Independent Variables \((x_i)\) as Source Tracers

<table>
<thead>
<tr>
<th>Fossil Fuel VOCs</th>
<th>Biogenic VOCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1-trichloroethane</td>
<td>Methyl chloride</td>
</tr>
<tr>
<td>Methylethylketone</td>
<td>Methanol</td>
</tr>
<tr>
<td>Isopentane</td>
<td>Hydroxyacetone</td>
</tr>
<tr>
<td>Pentane</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>Butane</td>
<td>Isoprene</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>Acetone</td>
</tr>
<tr>
<td>Isobutane</td>
<td>Acetic Acid</td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
</tr>
<tr>
<td>Methyl tertiary butyl ether</td>
<td></td>
</tr>
<tr>
<td>Isopropyl nitrate</td>
<td></td>
</tr>
<tr>
<td>o-xylene</td>
<td></td>
</tr>
<tr>
<td>n-pentane</td>
<td></td>
</tr>
</tbody>
</table>

[VOC]'s normalized.
Allows direct comparisons between \(B_i\).

Biogenic vs Anthropogenic (FF) influence by sum of \(|B_a|\) versus \(|B_b|\)
WSOC Biogenic/Anthropogenic WSOC by Multivariate Analysis For INTEX-B Data

Percent observed WSOC variability explained by model

- Asian: WSOC mostly associated with anthro. VOCs, some BB
- N. American 50/50
- Cloud processed 2/3 biogenic VOCs
Summary: INTEX-B C-130

• In Asian air masses reaching N. America:
 – PM$_1$ SO$_4$$^-$ and OA concentrations are low < 1 µg/m3
 – Role of precip. scavenging during transport results in?
 • PM$_1$ Free Trop. OA < SO$_4$$^-$
 • Unlike SO$_4$$^-$, anthrop. OA not regenerated far from source.

• North American (continental) air masses:
 – Free Trop. OA > SO$_4$$^-$
 – Evidence for cloud processing as a source for PM$_1$ FT OA, and mainly associated with biogenic VOCs

Paper available at: http://www.atmos-chem-phys-discuss.net/papers_in_open_discussion.html